Tomorrow's Kitchen 3548360Cool Plate

£14.975
FREE Shipping

Tomorrow's Kitchen 3548360Cool Plate

Tomorrow's Kitchen 3548360Cool Plate

RRP: £29.95
Price: £14.975
£14.975 FREE Shipping

In stock

We accept the following payment methods

Description

The extremities of the product may become overcooled due to additional water flowing across the top surface or from the rolling process itself. During the head and tail (H/T) masking, the water flow reduces by a predefined level and distance along the material to compensate for this additional cooling. Feedforward Control Multiple internal and external features can be incorporated into the two Die Cast tools. After casting the two halves can be bonded together by welding or by the use of an epoxy. Brazed (Liquid cold plate) Industry-wide, the use of inline plate cooling technologies has proven to be essential to producing high-strength steel grades. Recently, producers have focused on decreasing their environmental impact and lowering operational costs by reducing post-processing requirements and carefully monitoring and managing water consumption. To this end, the specialists and experts at Primetals Technologies developed the MULPIC system, a comprehensive system for inline plate cooling providing unparalleled control over the plate cooling process. What is inline plate cooling?

While the MULPIC system consists of a cooling machine featuring precision valve control and an advanced automation system, a process model, or “digital twin,” allows for the integration of historical data, real-time information, and model adaption to impact the efficiency of continuous operation. A profiled lid is then placed into a recess above the flow-path and is F.S.W (friction stir welded) into place. Finally the welded surface is fly-cut flat, inlet/outlet holes and component mounting holes are added. Die Cast (Liquid cold plate)A gun-drilled cold plate is manufactured by drilling a series of holes through the length of an aluminium plate to form multiple flow paths. This technology is ideal for prototypes and small production runs as no tooling investment is required. Each manufacturing technique has advantages depending on the liquid cold plate design, the manufacturing volume required, the choice of cooling liquid, pressure drop requirements and the financial budget of the customer. Typical Applications for Liquid cold plates Key mechanical property predictions, including yield strength, ultimate tensile strength, elongation, and hardness Accelerated cooling of hot-rolled sheets emerged in the 1980s. Today, “alloying with water” is standard practice in the steel industry, where micro-alloyed steel plates are cooled directly after rolling, achieving the desired strength, flatness, and toughness. However, the value of accelerated cooling extends beyond the ability to achieve the desired microstructure and product quality but also allows for the elimination of expensive reheating practices, efficient water utilization, improved yield, and an accelerated production time.

Each bank includes an independently driven edge masking system on each side of the cooling machine, preventing overcooling which may lead to the poor flatness of the plate following the cooling process. Head and Tail Masking By recalculating the required flow at every meter along the plate length, feedforward control compensates for variations in the incoming product temperature. Availability and Maintenance Improvements These cold plates have the advantage that there are no thermal boundaries and the aluminium plate has had no thermal stress during the manufacturing process so flatness is easier to achieve. FSW Friction stir welded (Liquid cold plate) Brazing in a high vacuum environment provides the most process control and produces the cleanest parts, free of any oxidation or scaling. It is the preferred brazing environment for brazing aerospace components, hardening medical devices and other applications that require the absolute highest part quality. Columbia-Staver are the go to experts in liquid cooling and offer a comprehensive range of cold plate technologies such as, Serpentine (tube in plate) designs, gun drilled, and multi piece designs that can have enhanced surface areas included in the liquid path. Columbia-Staver can select the joining method of a multi-piece design to suit the design and volume required. Columbia-Staver can also offer FSW (Friction Stir Welded) cold plates, Vacuum Brazed and Dip Brazed.

The next step beyond an open-air environment is to use a controlled atmosphere under normal or close-to-normal atmospheric pressure. In this type of environment, a high degree of control over the overall process can be achieved and open-air issues of oxidation, scaling and carbon buildup can be virtually eliminated. Vaccuum brazing Crossbow” and “canoe” are common flatness defects for plates. By independently setting the flow from each top and bottom header, individual flow control valves can help limit these defects. Selecting the flow ratio can compensate for differences in the water-to-material heat transfer coefficients for the top and bottom surfaces. Edge Masking This is a two piece construction. The liquid flow path is CNC machined into the base. This flow-path can be complex and can even incorporate fins to enhance the heat transfer surface.

While online operations can experience improvements, offline analysis of aspects of inline cooling improves the function of MULPIC—from heat transfer and metallurgical properties to the impact of the cooling machine. MULPIC’s Digital Twin is a model that utilizes the same models as the Level 2 control system and cooling model that adds a user interface to perform offline simulations. These simulations allow steel producers to optimize the cooling process fully. Flatness and yield are two key performance indicators that contribute significantly to the overall efficiency of the production of steel plates. Rectifying flatness defects requires post-processing, such as cold leveling, so the ability to control and optimize flatness during cooling is an essential feature of the technology. Improving yield from a plate means that less steel is needed to produce the equivalent final product, saving energy and emissions. During cooling, the final temperature uniformity, which influences mechanical property distribution in longitudinal and transverse directions, significantly impacts yield. The MULPIC system includes several actuators specifically designed to improve both the flatness and the yield and to control cooling with precision: Cooling flatness control actuators Crown Control For the inlet and outlet fluid path, holes are drilled perpendicular to the main fluid path and then partially plugged to create a continuous coolant path.The impact of accelerated cooling on plate production is immediately visible regarding reduced manufacturing time. For example, direct quenched (DQ) or abrasion-resistant steel plates require specific processing that traditionally utilizes reheating, quenching, and tempering to reach the necessary hardness, toughness, work-hardening, and ductility required. Producers of high-strength steel focus on these characteristics because abrasion-resistant steel is essential in mining, lifting, and excavation industries. Inline cooling technology is a viable solution for steel producers to achieve greater efficiency by applying direct quenching that bypasses the reheating step. Liquid cold plate solutions are currently deployed in: Renewable Energy Systems, Traction Systems, Medical Equipment, IGBT and Power Semi-Conductor Systems, Lasers, Data Centres, Industrial Power Applications, Defence Systems, Avionics, Fuel Cells, Battery Cooling and many more High Power and High Heat Flux Applications. Tube in Plate (Liquid cold plate) The "hot" side is attached to a heat sink so that it remains at ambient temperature, while the cool side goes below room temperature. In special applications, multiple coolers can be cascaded or staged together for lower temperature, but overall efficiency (COP) drops significantly. The maximum COP of any refrigeration cycle is ultimately limited by the difference between the desired (cold side) and ambient (hot side) temperature (the temperature of the heat sink). The higher the temperature difference (delta), the lower the maximum theoretical COP.



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop